

India's Most Comprehensive & the Most Relevant Test Series designed according to the latest pattern of exams!

JEE MAIN

JEE ADV.

WBJEE

MHT CET

and many more...

Click here to join Test Series for 2022

It's time for you to crack upcoming IIT JEE Main & Advanced and other competitive exams with India's Most Trusted Online Test Series. Many questions at JEE Main 2021 were same/similar to the ones asked in our test series. That's the power of our test series!

Trusted by thousands of students & their parents across the nation

Our result in JEE Main 2021

150+

Got 99+ percentile (overall)

301

Got **99+ percentile** in one or more subjects

85%

Improved their score by **25 percentile**

89%

Felt **overall confident** after the test series

Click here to join Test Series for 2022

FREE Question Bank & Previous Year Questions for

JEE MAIN

JEE ADV.

BITSAT W

WBJEE MHT CET

and many more...



Why download MARKS?

- Chapter-wise PYQ of JEE Main, JEE Advanced, NEET, AIIMS, BITSAT, WBJEE, MHT CET etc.
- Chapter-wise NTA Abhyas questions
- Taily practice challenge and goal completion
- Bookmark important questions and add them to your notebooks
- Create unlimited Custom Tests

And all this for FREE. Yes, FREE! So what are you waiting for, download MARKS now.

4.8

Rating on Google Play

30,000+

Students using daily

1,00,000+

Questions available

Gravitation

Newton's law of gravitation: Newton in 1665 formulated that the force of attraction between two masses m₁ and m₂ as

$$F = \frac{Gm_1m_2}{r^2} \qquad \qquad m_1 \qquad \qquad m_2$$

where $G = 6.67 \times 10^{-11}$. Nm⁻² and is called universal gravitational constant.

• Gravitational field Intensity: Gravitational force per unit mass placed at a point is called gravitational field intensity at that point. Gravitational field intensity of earth is 'g'

$$I = \frac{F}{F}$$
 where test mass m is very very small.

- Gravitational potential (V_g): Gravitational potential at a point is the amount of work done to bring a unit mass from infinity to that point under the influence of gravitational field of a given mass M, $V_g = -\frac{GM}{r}$
- Gravitational potential and field due to system of discrete mass distribution.

$$V = V_1 + V_2 + V_3 + \dots$$
i.e.
$$V = \sum_{i=1}^{N} V_i$$

$$I = I_1 + I_2 + I_3 + \dots$$
i.e.
$$I = \sum_{i=1}^{N} I_i$$

• Gravitational potential and field due to system of continuous mass distribution.

 $V = \int dV$ where dV is potential due to elementary mass dM.

 $\vec{I} = \int d\vec{I}$ where $d\vec{I}$ is field intensity due to elementary mass dM.

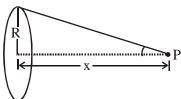
• Gravitational potential energy of two mass system is the amount of work done to bring a mass m from infinity to the point P under the influence of gravitational field of a given mass M. $U_g = -\frac{GMm}{r}$

where, U_g is G.P.E. of two mass system.

Note that
$$U_g = mV_g$$

- In general, gravitational potential energy of a system is work done against gravitational force in assembling the system from its reference configuration. Infinite mutual separation is reference configuration for mass-system.
- Gravitational field intensity due to a ring of radius R, mass M at any point on the axial line at a distance x from the centre of the ring is

$$E_{g} = \frac{GM.x}{(R^2 + x^2)^{3/2}}$$



The field is directed towards the centre. At the centre of the ring E_g is minimum (= 0) and E_g is maximum at

$$x=\frac{R}{\sqrt{2}}$$

[2] Gravitation

$$\begin{array}{l} \bullet \quad \text{Relation between Field and potential} : \ I = \frac{-dV}{dr} \Rightarrow \overset{r}{I} = \frac{-\partial V}{\partial x} \hat{i} - \frac{\partial V}{\partial y} \hat{j} - \frac{\partial V}{\partial z} \hat{k} \\ dV = -I.dr \end{array}$$

Work done against gravitational force in changing the configuration of a system
 P.E. in final configuration – P.E. in initial configuration.

i.e. Work done =
$$U_2 - U_1 = W_{Against gravitational force} = -W_{by gravitational force}$$

• Variation of g with height

$$g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2} \text{ if } h > \frac{R}{10}$$
$$g' = g\left(1 - \frac{2h}{R}\right) \text{ if } h < \frac{R}{10}$$

Note g never becomes zero with height, that is, $g \to 0$ if $h \to \infty$

• Variation of g with depth (d)

$$g' = g \left(1 - \frac{d}{R} \right)$$
; where g is acceleration due to gravity at earth surface.

• Variation of g with rotation of earth / latitude

$$g' = g \left(1 - \frac{R\omega^2}{g} \cos^2 \lambda \right)$$

that is, g is maximum at the poles and minimum at the equator

• Escape velocity $v_e = \sqrt{\frac{2GM}{R}}$;

Escape velocity is the minimum velocity required to escape a mass from the surface of the earth/ planet from its gravitational. If velocity provided is greater than or equal to escape velocity, the mass will never come back to the earth/planet.

Planetry motion

Oribit velocity
$$v_o = \sqrt{\frac{GM}{r}}$$
 from the fact $\frac{GMm}{r^2} = \frac{mV^2}{r} = \text{Re quired Centripetal force}$

where $\nu_{_{0}}$ is speed with which a planet or a satellite moves in its orbit and r is the radius of the orbit.

Time period
$$T = \frac{2\pi r}{v_o} \text{ or } \boxed{T^2 = \frac{4\pi^2 r^3}{GM}} \; ; \quad \text{where } v_0 = \text{orbital velocity} = \sqrt{\frac{GM}{r}}$$
 Kinetic Energy
$$KE = \frac{1}{2}mv_o^2 = \frac{GMm}{2r} \; , \quad \text{Potential Energy} \quad PE = -\frac{GMm}{r}$$
 Net energy
$$E = KE + PE = -\frac{GMm}{2r}$$

• Kepler's Laws

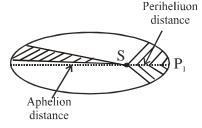
First Law: The planets revolve around the sun in the elliptical orbits with sun at one of the focus.

Gravitation [3]

Second Law: The radial line sweeps out equal area in equal interval of time. This law may be derived from law of conservation of angular momentum.

Areal velocity
$$=\frac{dA}{dt} = =\frac{L}{2m} = constant$$

QTorque about axis of rotation is zero so angular moment is constant i.e. $I_1\omega_1 = I_2\omega_2$



$$\Rightarrow (mr_1)(v_1) = (mr_2)(v_2) \Rightarrow \frac{v_1}{v_2} = \frac{r_2}{r_1}$$

Thus $\frac{v_1}{v_2} = \frac{r_2}{r_1}$ or $\frac{v_{\text{perihelion}}}{v_{\text{aphelion}}} = \frac{r_{\text{aphelion}}}{r_{\text{perihelion}}}$ that is, when the planet is closer to the sun it moves fast.

Third Law: The square of the time period of a planet is proportional to he cube of a semimajor axis

$$T^2 \propto a^3$$
 or $T^2 \propto r^3$

 $\text{If eccentricity of the orbit is e then } \frac{r_{\text{aphelion}}}{r_{\text{perihelion}}} = \frac{r_{\text{max}}}{r_{\text{min.}}} = \frac{a + ae}{a - ae} = \frac{1 + e}{1 - e}$

• Weightlessness in a satellite:

Net force towards centre = $F_c = ma_c \Rightarrow \left(\frac{GMm}{r^2} - N\right) = m\frac{V^2}{r}$ where N is contact force by the surface

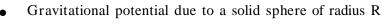
 $\Rightarrow \frac{GMm}{r^2} - N = m \left(\frac{GM}{r^2}\right) \text{ or } N = 0 \text{ that is, the surface of satellite does not exert any force on the body and hence its apparent weight is zero.}$

 Gravitational potenial due to a ring at any point on its axis, assuming mass of the ring is uniformly or nonuniformly distributed is

$$V = \frac{-GM}{\sqrt{R^2 + x^2}}$$
 ; potential at the centre is $\frac{-GM}{R}$

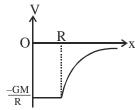
• Graviational potential due do a shell

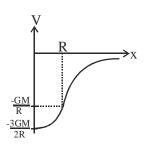
$$V_{_{in}}=V_{_{sur}}=\frac{-GM}{R};\ V_{_{out}}=\frac{-GM}{x}$$



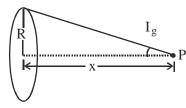
$$V_{in} = \frac{-GM}{2R^3} \left(3R^2 - x^2\right) \quad \text{for} \quad 0 \le x \le R$$

$$V_{sur} = -\frac{GM}{R}$$
 for $x = R$; $V_{out} = \frac{-GM}{x}$ for $x > R$





• Gravitational field intensity due to a disc

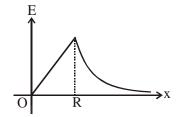


$$E = \frac{2GM}{R^2} \left[1 - \frac{x}{\sqrt{x^2 + R^2}} \right] = \frac{2GM}{R^2} [1 - \cos \theta]$$

• Gravitational field intensity due to a solid sphere

$$E_{in} = \frac{GMx}{R^3} \text{ for } x < R$$

$$E_{sur} = \frac{GM}{R^2} \; , \; E_{out} = \frac{GM}{x^2} \; \; x \geq R \label{eq:energy}$$



• Gravitational field intensity due to a hollow sphere

$$\boldsymbol{E}_{in} = \boldsymbol{0} \ ; \ \boldsymbol{x} < \boldsymbol{R}$$

$$E_{surface} = \frac{GM}{R^2}$$
; $x = R$

$$E_{out} = \frac{GM}{x^2}; x > R$$

